Long-Baseline Interferometric Study of Binary Stars: Status and Prospects

A. Boden IPAC/Caltech/JPL

Basic Concept Review

- Nature Likes to Make Stars in Multiple Systems (> 50%)
- Binary Stars are the Hydrogen Atoms of Stellar Astrophyics
 - Their (gravitational) interactions are simple enough that they can be exploited to infer fundamental properties of the stellar constituents
 - Model is Simple: Keplerian Motion
- Of all the Fundamental
 Parameters, Mass is the Most
 Fundamental (But *Not* the Only...)

$$\tau^2 \propto a^3 / (m_1 + m_2)$$

Basic Concept Review (2)

- Spectroscopic Study Gives Line-of-Sight Kinematics
 - Physical Scale in Radial Dimension
 - Keplerian Parameters: e, τ, T₀, K's, One Euler
 Angle (ω)
- Astrometric (Relative Position) Study Gives Scale 3-Space Geometry
 - Motion in Time Uniquely Defines All Three Euler Angles (i, Ω, ω)
 - Angular Scale of Orbit (a")
- Synthesis of Both (Double-Lined Orbit)
 Gives Physical Scale For System
 - Component Masses, Luminosities, System Distance

Basic Concept Review (3)

• Interferometric Resolution (V, V²) a Proxy For Relative Astrometry

$$V = \frac{V_1 + rV_2 \exp(\frac{2\pi i}{\lambda}B \bullet s)}{1 + r}$$

Binary Phase Space

 Long-Baseline Interferometers Specialize in High Angular Resolution

Small Separations

Short Period Systems

Or Distant Systems

Fig. 7. Period distribution in the complete nearby G-dwarf sample, without (dashed line) and with (continuous line) correction for detection biases. A Gaussian-like curve is represented whose parameters are given in the text

10/28/2000

From DM 91

